手机浏览器扫描二维码访问
但这个概念并没有“节约计算资源”,因为理论上它只是把“1台电脑10小时工作量”变成了“10台电脑1小时的工作量”而已。而且这种最原始的“神经网络”也依然没法解决那些“似是而非”的模糊问题——他们只能回答“有我认识的人没有我认识的人”这种非此即彼的问题。
库克点名了在这个领域让顾诚对其应用模型说出个子丑寅卯来,顾诚自然不能避战。
“我拜读过辛顿教授对于神经网络的最新模型假说,卷积神经网络,以及与之配套的学习型算法。我认为这个东西可以和互联网的自动识别索引工具相结合。至于具体的应用场景么……那就属于商业机密了,恕我无可奉告。”
“卷积神经网络的新用法?”
史蒂芬.库克教授一愣,但很快冷静下来,他可不是一个概念就能忽悠住的。
“看来,顾先生要论述的重点,就在于‘卷积’上面了?”
“没错,如果没有‘卷积’,仅有‘神经网络’,我们依然没法讨论近似于人脑判断的模糊问题。”顾诚一副成竹在胸的样子,似乎对对方的反应早有预判。
他打开电脑,接上投影仪,屏幕上出现了一张猫的图片。
“我用图上这只猫举例子——尽管这只猫一只耳朵竖着一只耳朵折了,眼珠瞳孔也有点不正常,尾巴还特别短,毛色肮脏还和照片的背景色非常接近,但我作为一个人类,还是一眼就认出了这确实是一只猫。
现在,我用我根据辛顿教授的阀值思想编写的自学程序,用机器对这只猫是否是猫进行初次预判。在这个算法里,我们预构了30个组合特征量,比如‘猫眼’、‘猫耳’‘猫毛’、‘猫尾’……然后用三十个神经元单位的处理资源,分别针对每一个组合特征量进行预判,然后分别给出结果。
在这三十个神经元单位内部,我们再根据‘本图猫眼与本神经元见过的猫眼’之间的像素相似度作出判断,给出一个积值,从而得到‘这有85%概率是一只猫眼’或者‘有70%概率是一只猫耳’之类的参考量。最后,把这30个组合特征量按照默认1:1的权重进行组合,最终平均分高于60分就判定‘这是一只猫’。”
“那成功率肯定很可怜。”库克教授耸耸肩,一脸的悲悯。
“当然很可怜,因为我的实验才开始呢——做到这一步,并不是要让机器判断正确,而是在机器判断完之后,让人眼再复查一遍。如果机器和人的判断结果一致,那么就给目前的特征量分组方式和每个特征量的权重比例数组加1分。
然后,再判断下一次。如果还对,再加一分。直到判断错了,然后就自动对现有权重比例数组作出调整:比如,此前判断正确的两次‘平均分60分’的结果中,‘猫眼’得分分别是75和80分,而‘猫耳’得分是45和40分。而判断错误的那一次‘平均分60分’的结果中,‘猫眼’是50分‘猫耳’是70分。那么,我们就可以得出一个结论:决定猫是否长得像猫的所有特征变量中,‘猫眼’是比‘猫耳’更关键的变量,在计算综合分的时候应该提升其权重。
最后,按照这个逻辑让这套算法看一百张猫图,一千张,一万张……算法自然会总结出一套‘即使不全对,但正确概率越来越高的判断权重’。”
人类的小孩儿,在3岁的时候学习认各种东西,其实大脑里就是这么算的。没什么非坚持不可的特征,看个几百只猫,自然而然就调整各个特征权重,知道什么是猫了。
没有任何一个变量,拥有“一票否决”的权力。充其量,只是其在卷积神经网络中的“积分量”比较高而已。正是因为如此,人类才可以在看到一只双眼彻底被挖掉的猫时,依然认出这是一只猫。
……
顾诚的整体论述,自然是非常冗长的,难以一一赘述。
其中很多关窍,说透了之后也完全通俗易懂,根本没什么逼格。
但是顾诚至少为“如果做不到全对,就没有商业价值”的卷积神经网络,提供了一种“就算现在做得还不太好,也能在一两年内就取得阶段性商业变现可能性”的路径。
史蒂芬.库克教授与之交谈良久,最后默然不知如何应对。
“神圣的神经网络算法研究,居然用这种毫不严谨毫不科学的推论、假设、模拟来解释。这些想法和推论根本没法形成论文和成果体系。”库克教授本能地抨击了几句,但是冷静下来之后,一咬牙,不得不承认,“但是,很有启发。”
对于库克教授的指责,顾诚不以为意:“就像中医,不科学,但是有时候它确实可以治好病。只是要碰运气,而且解释不通其治好病的必然道理而已——但我只要疗效,不在乎科不科学。您有兴趣证明,完善学术体系,我很尊重您的想法。但我不太会为这些证明掏钱。我这次来,只想投资一些哪怕不科学也能用上的东西。”
库克教授无奈地摇摇头:“真是可惜,有那么好的脑子,却不以投身科学为荣。”
“没办法,我是产业界的人士,我在乎的是实用主义。”
顾诚不再理会那个理想主义的老学阀,只是重新提出了自己的邀请。
“库克教授,我今天言尽于此。我希望你不会用你的学术权威,去劝阻其他人投身产业界。我也非常欢迎您给我介绍人才,介绍从各种角度‘碰运气’的人才。”
03年的东海岸,盘根错节的混逼格学者还是挺多的,成果和产业界的结合,普遍还停留在那些既能刷脸也能刷钱的成果。
要到杰夫辛顿这一票人普遍想通之后,东海岸学界以钱衡量成功的氛围才会浓重起来。任何事情,都是一步步来的。
“你们谁想去的,就去吧。我不会阻拦。至于第二个建议,我会考虑。”
美人醋 男神他要脸[娱乐圈] 不科学的科学家 皇朝不朽 潘森附体 无限之传奇盗贼 女神她很难撩 魔女修仙日常 快穿之我快死了 三国最强权臣 一世主宰 重生之文娱巨星 仙族试炼生 韩娱之风 元帅拯救攻略 重铸清华 初浣 男神总爱买买买 捍卫荣耀 末世游戏[重生]
宋保军是个平庸懦弱没上进心的学生,一次偶然的刺激过后开始奋发图强,这时体内潜伏已久的三十二重人格逐渐觉醒,从此成了国学大师的家中常客,高官贵族的座上嘉...
她本是燕国的长公主,却在大婚之日国破家亡,一腔情意赠了空欢喜。以身殉国却得上苍眷顾得以重生,这些国仇家恨她势必要讨回。ampampgt世人嗟叹苏家嫡女祸乱天下不得好死,谁又知这风华无限之下她的苦衷?现在的她有多狠毒,当初的她就有多纯真!只是红尘深处,阡陌往生之际这两世的孤寂,到底排遣了谁?鸭子的群397813058群里有鸭子旧书消息,快来敲门...
简介萧逸,本是玄医门一代炼丹宗师,意外身死,附身于海城市一个落魄青年身上,重生于一家中医馆内,失传已久的四象针法绝技重见天日,各种灵丹妙药震惊世人。宗师...
简介①我要升往天上,高举我的神座在众星的殿堂我要坐在聚会的山上,看北方的黄昏在枝头绽放我要站在璀璨的光上,与至上者同等,品尝永生的蜜浆。简介②DND封...
亲眼目睹即将和自己走进婚礼殿堂的男孩与闺蜜私情,她心如刀绞。一纸契约,她成为那个冷漠男人的妻子。简单的几个字就此决定改变她的命运。深入接触,她发现原来冷漠的他也有不为人知的一面,不知不觉,恋上他的冷漠,爱上他的专一然而冷漠的他也逐渐被独特的她所吸引,看他如何为保护她而作出怎样巨大的牺牲。...
封家有女,年约二八,性子憨厚,体型敦实,据说,特别的好生养! 大盛有帝,二十有三,年号御锦,容貌俊秀,据说,悲催的没儿子! 一场争斗,圣旨入家,封家后宅,封女似婳,举着胖爪,泪眼如花,不嫁!这个皇帝活不过二十八! 封似婳看着面前的包子们,伸出胖胖的爪子一个,两个,三个皇上,难不成臣妾进宫来就是为了给你生儿子的? 段亦晗皱眉深思不然呢?爱妃除了吃和生儿子外,还有别的用处吗? 其实这就是一场本土重生男对上穿越贪吃女的故事,据说作者正在努力卖萌,各种打滚求收藏!喵呜 蠢作者贴心提示 1转(盗)载(文)者请自觉配合,本作者拒绝转(盗)载(文),多谢! 21月8号入V,入后每天日更,偶尔加更,争取不断更!好基友的文,点击图片直达点击包养女妖↓悠闲生活奋斗录欢宠两相宜...