手机浏览器扫描二维码访问
功回球概率沿着图中的两条直线上升到交点之上,也就是超过48%。因此,40%的时间瞄准对方的正手就是发球者的最佳策略。
混合策略的确切比例是由基本行动配对而成的4种情况确定的。对于拥有不同的绝对优势和相对优势的选手,这里的数字90、60、30
和20会相应发生变化,而他们的最佳混合策略也会随之不同。我们很快就会发现,这样一些变化可能导致一些令人惊讶的结果。这里的关键在于,你必须通过估计你真正参加的博弈的4种基本情况,确定自己的最佳混合策略。
这里有一条捷径,使你不必画出前面提到的图表也可以计算出均衡策略。这个简单的算术方法归功于J。D.威廉斯。'3'回到基本情况的表格。对于发球者,如果选择瞄准对方正手的策略,就要观察对方选择两种不同的回应方式之一会使结果发生什么变化;我们得到90…30=60
。假设他瞄准对方反手发球,再做同样的计算,可得60…20=40 。将上述数字倒过来排列,就能得到最佳混合策略中采用这两种策略的概率。①
因此,发球者应该按照40:60的比例瞄准对方的正手和反手。
现在我们改从接球者的角度考察同一场比赛。图7…4显示了他的不同选择会有什么不同的结果。假如发球者瞄准他的反手,那么,他回①
我们可以用一点代数知识验证这个结果。假如纵列选手的得失情况如下图所示,左列对右列的均衡比例为(D…B):(
A…C)。纵列选手选择左列的概率是p,那么,无论横行选手选择上或者下都没有关系;pA+(1…p)B=pC十1…P)D 意味着p (
1…p )=(D…B )(A…C)
,如前所述。由于横行选手的得失是纵列选手的得失的负数,他的均衡混合策略就是上行对下行,即(D…C):(A…B)。
球的时候向反手方移动就能得到60%的成功回球概率,而向正手方移动的成功回球概率只有20%。从O到100%改变向正手方移动的概率,就得到一条和上述两点相交的直线。与前面的分析类似,若是发球者瞄准对手的正手,我们就得到一条从30%上升到90%的直线。这两条直线交于一点,在这一点,接球者向正手方移动的概率为30%
,无论发球者选择瞄准哪一方,他的成功回球概率始终维持在48%。任何其他混合策略都会让发球者占便宜,使他得以选择更好的策略,将接球者的成功回球概率进一步降低到48%以下。
图7…4 接球手向正手移动的概率(% )
此外,我们也可以采用威廉斯的方法。表格显示了接球者两种不同选择可能导致什么不同结果。若向正手方移动,我们得到90…20=70 ;
向反手方移动,我们得到60…30=30。将这两个数字倒过来排列就得到最佳混合策略的比例:30%的时间准备向正手方移动,70%的时间准备向反手方移动。
你可能已经注意到,从两位选手的不同角度计算最佳混合策略,会得到一个有趣的共同点:两次计算会得到同样的成功回球概率,即48%。接球者若采用自己的最佳混合策略,就能将发球者的成功概率拉低到发球者采用自己的最佳混合策略所能达到的成功概率。这并非巧合,而是两个选手的利益严格对立的所有博弈的一个共同点。这个结果称为最小最大定理,由前普林斯顿数学家约翰·冯·诺伊曼(John
von Nrumann)与奥斯卡·摩根斯顿(Oscar
Morgenstern)创立。这一定理指出,在零和博弈里,参与者的利益严格相反(一人所得等于另一人所失),每个参与者尽量使对手的最大收益最小化,而他的对手则努力使自己的最小收益最大化。他们这样做的时候,会出现一个令人惊讶的结果,即最大收益的最小值(最小最大收益)等于最小收益的最大值(最大最小收益)。双方都没办法改善自己的地位,因此这些策略形成这个博弈的一个均衡。
我们以网球比赛为例,并假设每个选手只有两种策略,以此证明这一定理。假如发球者想努力使接球者的最大成功率最小化,他应该在假设接球者已经正确预计到他的混合策略且会做出最优回应的基础上确定自己的行动。也就是说,接球者的成功率将是图7…5中两条直线的最大值。这个最大值的最小值出现在两条直线的相交处,该点的成功率为48%。
图7…5发球手攻正手的概率(% )
现在我们从接球者的角度考察这个问题:他要努力使自己的最小收益最大化。如图7…6所示,假如接球者一半时间向正手方移动,一半时间向反手方移动,他的新的收益曲线就是原来两条直线的平均值,以点线显示。由于这条直线是向上延伸的,其最小值永远出现在左端,该点的成功率为40%。无论接球者向两方移动的比例是多少,这条直线一定经过成功率为48%的那一点,这是因为发球者可以选择采用40:60的混合策略。假如这条直线出现任何倾斜,那么,它的一端一定落在48%以下。只有在接球者的混合策略为30:70的时候,这条直线才会变成一条水平直线,最小值变成48%。因此,最大值的最小值等于最小值的最大值——48%。
图7…6发球手攻正手的概率(%)
最小——最大定理的普遍证明相当复杂,不过,其结论却很有用,应该记住。假如你想知道的只不过是一个选手之得或者另一个选手之失,你只要计算其中一个选手的最佳混合策略并得出结果就行了。
我们的其他工具,比如威廉斯的方法和上述图表,能够很好地解决一切只有两个选手参加且他们各有两个策略的零和博弈。不幸的是,这些工具并不适用于任何非零和博弈,也不适用于选手数目超过两个或者他们拥有的策略数目超过两个的零和博弈。经济学家和数学家发明了更加普遍的技巧,比如线性规划方法,可以找出最复杂的零和博弈的均衡策略。虽然这些技巧超出了本书的范围,我们还是可以利用其中得出的结果。
所有混合策略的均衡具有一个共同点:每个参与者并不在意自己在均衡点的任何具体策略。一旦有必要采取混合策略,找出你自己的均衡混合策略的途径就在于使别人对他们自己的具体行动无所谓。虽然这听上去像是一种倒退,其实不然,因为它正好符合零和博弈的随机化动机:你想阻止别人利用你的有规则的行为占你的便宜。假如他们确实倾向于采取某一种特别的行动,从你的角度观察,这只能表示他们选择了最糟糕的方针。
仙侠:一人,一龟,一家族 马化腾的腾讯帝国 左公关右广告 鹿门歌 若你不弃,此生不离 完美大小姐 美元的诡计 芍药客栈 给青年的十二封信 拱出银行的小猪 班主任兵法2·实战篇 我的世界分你一半 沉浮史玉柱 人生之钥 圈单 红尘四合(上下) 这些心态是必需的 飞得更高 三生不幸爱上你 临渊
三个女人,三朵花。一个热情如火,敢爱敢恨一个文静温柔,善解人意一个开朗洒脱,与众不同。这是发生在上个世纪九十年代的一段悲欢离合的爱情故事。她们从走出校门的那一天起,就注定今后的生活道路不可能是一帆风顺的。因为是临时工被人欺负,被人刁难,被世俗的眼光所不容,甚至因此失去工作和爱情。面对着这些突如其来的打击,她们迷茫过退缩过,但是最终她们还是重新振作起来,毅然选择走上了一条艰苦的创业之路。在这条充满风风雨雨的艰难创业道路上,她们还能重新收获自己的爱情吗?...
天降源珠,给地球带来了巨大的灾难,丧尸异兽的出现使得普通人只能龟缩在各个幸存下来的城市基地之中能一口喷出火焰烤断河流的强化者,能一脚踏平整座山峰的异化者,高山深海也拦不住的武者纷纷现世。这到底是人类的末日,还是一个新的时代的来临?方夜在山林中无意间被一道从天而降的光柱扫中,脑海中多了一个仙武系统,从此开始了他在末世当中的生死历程。--------------------------------------------------------------------求收藏,求推荐,求各种支持!...
曹越穿越来到明末的崇祯十四年七月,正好赶上了悲壮的松锦之战。松山城被满清建奴军队团团包围,作为一名军中将领,是逃跑还是跟着洪承畴死守松山,然后血溅沙场,为国捐躯?曹越不想死,更不想当建奴的俘虏,既然来到了大明,即使自己是挡车的螳臂,他也要努力抗争一次,在这个山河破碎的年代,以热血谱写一曲驱逐鞑虏,复我大汉山河的壮歌。热血与信念,铸就铁血的军魂,马蹄踏处,皆为华夏之国土,一个无比强盛的大明帝国,傲然屹立于天地间。秦淮八艳,长平公主,红娘子,美名流传千古----美人与江山,俱我所爱也...
我叫南风,女,今年十岁,目前流浪街头。坑蒙拐骗偷实在太低端,我最近正在琢磨转型。祈祷这一票开门红。真的,我觉得天道和我有仇。每当我要过上好日子的时候,命运总会转个弯。我不要再当好人,我要成为一个大魔头。...
一个身世凄苦的少年面对上古魔神的传承众多手下的追随美貌的爱人可爱的小萝利他是如何建立自己的黑道帝国强大的金融集团如何找寻自己的的身世...
他霸宠无边,她是我的女人,纵然杀了人放了火,只要她一个没有,我便是信了。她妖媚撩人,太子爷,奴家愿意被收拾。一个劲儿地钻怀里。他深情无边,我的女人,就是要宠到心尖上,有什么不满意通通冲我来。她坚韧相随,你输,我便陪你东山再起你赢,我变陪你君临天下。...